Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Most galaxies, including the Milky Way, harbor a central supermassive black hole (SMBH) weighing millions to billions of solar masses. Surrounding these SMBHs are dense regions of stars and stellar remnants, such as neutron stars (NSs) and black holes (BHs). NSs and possibly BHs receive large natal kicks at birth on the order of hundreds of kilometers per second. The natal kicks that occur in the vicinity of an SMBH may redistribute the orbital configuration of the compact objects and alter their underlying density distribution. We model the effects of natal kicks on a Galactic center (GC) population of massive stars and stellar binaries with different initial density distributions. Using observational constraints from stellar orbits near the GC, we place an upper limit on the steepness of the initial stellar profile and find it to be core-like. In addition, we predict that 30%–70% of compact objects become unbound from the SMBH due to their kicks and will migrate throughout the Galaxy. Different BH kick prescriptions lead to distinct spatial and kinematic distributions. We suggest that the Nancy Grace Roman Space Telescope may be able to distinguish between these distributions and thus be able to differentiate between natal kick mechanisms.more » « less
-
Abstract We present optical follow-up of IGR J16194-2810, a hard X-ray source discovered by the INTEGRAL mission. The optical counterpart is a ∼500L⊙red giant at a distance of 2.1 kpc. We measured 17 radial velocities (RVs) of the giant over a period of 271 days. Fitting these RVs with a Keplerian model, we find an orbital period ofPorb= 192.73 ± 0.01 days and a companion mass functionf(M2) = 0.365 ± 0.003M⊙. We detect ellipsoidal variability with the same period in optical light curves from the ASAS-SN survey. Joint fitting of the RVs, light curves, and the broadband spectral energy distribution allows us to robustly constrain the masses of both components. We find a giant mass of and a companion mass of , implying that the companion is a neutron star (NS). We recover a 4.06 hr period in the system’s TESS light curve, which we tentatively associate with the NS spin period. The giant does not yet fill its Roche lobe, suggesting that current mass transfer is primarily via winds. Modules for Experiments in Stellar Astrophysics evolutionary models predict that the giant will overflow its Roche lobe in 5–10 Myr, eventually forming a recycled pulsar + white dwarf binary with a ∼900 days period. IGR J16194-2810 provides a window on the future evolution of wide NS + main sequence binaries recently discovered via Gaia astrometry. As with those systems, the binary’s formation history is uncertain. Before the formation of the NS, it likely survived a common envelope episode with a donor-to-accretor mass ratio ≳10 and emerged in a wide orbit. The NS likely formed with a weak kick (vkick≲ 50 km s−1), as stronger kicks would have disrupted the orbit.more » « less
-
Abstract Primordial black holes (PBHs), theorized to have originated in the early Universe, are speculated to be a viable form of dark matter. If they exist, they should be detectable through photometric and astrometric signals resulting from gravitational microlensing of stars in the Milky Way. Population Synthesis for Compact-object Lensing Events, orPopSyCLE, is a simulation code that enables users to simulate microlensing surveys, and is the first of its kind to include both photometric and astrometric microlensing effects, which are important for potential PBH detection and characterization. To estimate the number of observable PBH microlensing events, we modifyPopSyCLEto include a dark matter halo consisting of PBHs. We detail our PBH population model, and demonstrate ourPopSyCLE+ PBH results through simulations of the Optical Gravitational Lensing Experiment-IV (OGLE-IV) and Nancy Grace Roman Space Telescope (Roman) microlensing surveys. We provide a proof-of-concept analysis for adding PBHs intoPopSyCLE, and thus include many simplifying assumptions, such asfDM, the fraction of dark matter composed of PBHs, and , mean PBH mass. Assuming M⊙, we find ∼3.6fDMtimes as many PBH microlensing events than stellar evolved black hole events, a PBH average peak Einstein crossing time of ∼91.5 days, estimate on order of 102fDMPBH events within the 8 yr OGLE-IV results, and estimate Roman to detect ∼1000fDMPBH microlensing events throughout its planned microlensing survey.more » « less
-
ABSTRACT The identification and characterization of massive (≳ 0.8 M⊙) white dwarfs is challenging in part due to their low luminosity. Here, we present two candidate single-lined spectroscopic binaries, Gaia DR3 4014708864481651840 and 5811237403155163520, with K-dwarf primaries and optically dark companions. Both have orbital periods of P ∼ 0.45 d and show rotational variability, ellipsoidal modulations, and high-amplitude radial velocity variations. Using light curves from the Transiting Exoplanet Survey Satellite (TESS), radial velocities from ground-based spectrographs, and spectral energy distributions, we characterize these binaries to describe the nature of the unseen companion. We find that both systems are consistent with a massive white dwarf companion. Unlike simple ellipsoidal variables, star-spots cause the light-curve morphology to change between TESS sectors. We attempt to constrain the orbital inclination using phoebe binary light-curve models, but degeneracies in the light curves of spotted stars prevent a precise determination. Finally, we search for similar objects using Gaia DR3 and TESS, and comment on these systems in the context of recently claimed compact object binaries.more » « less
-
Abstract From the formation mechanisms of stars and compact objects to nuclear physics, modern astronomy frequently leverages surveys to understand populations of objects to answer fundamental questions. The population of dark and isolated compact objects in the Galaxy contains critical information related to many of these topics, but is only practically accessible via gravitational microlensing. However, photometric microlensing observables are degenerate for different types of lenses, and one can seldom classify an event as involving either a compact object or stellar lens on its own. To address this difficulty, we apply a Bayesian framework that treats lens type probabilistically and jointly with a lens population model. This method allows lens population characteristics to be inferred despite intrinsic uncertainty in the lens class of any single event. We investigate this method’s effectiveness on a simulated ground-based photometric survey in the context of characterizing a hypothetical population of primordial black holes (PBHs) with an average mass of 30M⊙. On simulated data, our method outperforms current black hole (BH) lens identification pipelines and characterizes different subpopulations of lenses while jointly constraining the PBH contribution to dark matter to ≈25%. Key to robust inference, our method can marginalize over population model uncertainty. We find the lower mass cutoff for stellar origin BHs, a key observable in understanding the BH mass gap, particularly difficult to infer in our simulations. This work lays the foundation for cutting-edge PBH abundance constraints to be extracted from current photometric microlensing surveys.more » « less
-
Abstract Microlensing events have historically been discovered throughout the Galactic bulge and plane by surveys designed solely for that purpose. We conduct the first multiyear search for microlensing events on the Zwicky Transient Facility (ZTF), an all-sky optical synoptic survey that observes the entire visible northern sky every few nights. We discover 60 high-quality microlensing events in the 3 yr of ZTF-I using the bulk lightcurves in the ZTF Public Data Release 5.19 of our events are found outside of the Galactic plane (∣b∣ ≥ 10°), nearly doubling the number of previously discovered events in the stellar halo from surveys pointed toward the Magellanic Clouds and the Andromeda galaxy. We also record 1558 ongoing candidate events as potential microlensing that can continue to be observed by ZTF-II for identification. The scalable and computationally efficient methods developed in this work can be applied to future synoptic surveys, such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time and the Nancy Grace Roman Space Telescope, as they attempt to find microlensing events in even larger and deeper data sets.more » « less
-
Abstract Uncertainty in the initial–final mass relation (IFMR) has long been a problem in understanding the final stages of massive star evolution. One of the major challenges of constraining the IFMR is the difficulty of measuring the mass of nonluminous remnant objects (i.e., neutron stars and black holes). Gravitational-wave detectors have opened the possibility of finding large numbers of compact objects in other galaxies, but all in merging binary systems. Gravitational lensing experiments using astrometry and photometry are capable of finding compact objects, both isolated and in binaries, in the Milky Way. In this work we improve the Population Synthesis for Compact object Lensing Events (PopSyCLE)microlensing simulation code in order to explore the possibility of constraining the IFMR using the Milky Way microlensing population. We predict that the Roman Space Telescope’s microlensing survey will likely be able to distinguish different IFMRs based on the differences at the long end of the Einstein crossing time distribution and the small end of the microlensing parallax distribution, assuming the small (πE≲ 0.02) microlensing parallaxes characteristic of black hole lenses are able to be measured accurately. We emphasize that future microlensing surveys need to be capable of characterizing events with small microlensing parallaxes in order to place the most meaningful constraints on the IFMR.more » « less
-
Abstract Modern surveys of gravitational microlensing events have progressed to detecting thousands per year, and surveys are capable of probing Galactic structure, stellar evolution, lens populations, black hole physics, and the nature of dark matter. One of the key avenues for doing this is the microlensing Einstein radius crossing time ( t E ) distribution. However, systematics in individual light curves as well as oversimplistic modeling can lead to biased results. To address this, we developed a model to simultaneously handle the microlensing parallax due to Earth's motion, systematic instrumental effects, and unlensed stellar variability with a Gaussian process model. We used light curves for nearly 10,000 OGLE-III and -IV Milky Way bulge microlensing events and fit each with our model. We also developed a forward model approach to infer the t E distribution by forward modeling from the data rather than using point estimates from individual events. We find that modeling the variability in the baseline removes a source of significant bias in individual events, and the previous analyses overestimated the number of t E > 100 day events due to their oversimplistic model ignoring parallax effects. We use our fits to identify the hundreds filling a regime in the microlensing parameter space that are 50% pure of black holes. Finally, we have released the largest-ever catalog of Markov Chain Monte Carlo parameter estimates for microlensing events.more » « less
An official website of the United States government
